cryptoutil Algorithm

The cryptoutil algorithm is a cryptographic technique used for encrypting and decrypting data to ensure secure communication and storage. This algorithm can encompass various cryptographic methods, including symmetric and asymmetric encryption, hashing, and digital signatures. Symmetric encryption methods, like AES and DES, use a single key for both encryption and decryption, while asymmetric encryption methods, like RSA and ECC, utilize two different keys - a public key for encryption and a private key for decryption. Cryptographic hashing functions, such as SHA-256 and MD5, are used to generate unique and irreversible fixed-length outputs (hashes) from variable-length input data. Digital signatures, like DSA and ECDSA, provide a means to verify the authenticity and integrity of data by signing it using a private key and verifying it with the corresponding public key. Cryptoutil algorithms play a crucial role in securing modern-day communication and information systems by protecting sensitive data from unauthorized access and tampering. They are widely used in various applications, including secure communication protocols (e.g., SSL/TLS for secure web browsing), data storage encryption (e.g., full-disk encryption), password storage (e.g., using bcrypt or Argon2 for hashing passwords), and digital identity verification (e.g., using digital certificates in Public Key Infrastructure). These cryptographic techniques provide confidentiality, integrity, and authenticity to the data being transmitted or stored, ensuring that only authorized users can access and modify it. Robust cryptoutil algorithms are essential for maintaining privacy, security, and trust in the digital world.
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std;
use std::{io, mem};
use std::ptr;

use buffer::{ReadBuffer, WriteBuffer, BufferResult};
use buffer::BufferResult::{BufferUnderflow, BufferOverflow};
use symmetriccipher::{SynchronousStreamCipher, SymmetricCipherError};

/// Write a u64 into a vector, which must be 8 bytes long. The value is written in big-endian
/// format.
pub fn write_u64_be(dst: &mut[u8], mut input: u64) {
    assert!(dst.len() == 8);
    input = input.to_be();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 8);
    }
}

/// Write a u64 into a vector, which must be 8 bytes long. The value is written in little-endian
/// format.
pub fn write_u64_le(dst: &mut[u8], mut input: u64) {
    assert!(dst.len() == 8);
    input = input.to_le();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 8);
    }
}

/// Write a vector of u64s into a vector of bytes. The values are written in little-endian format.
pub fn write_u64v_le(dst: &mut[u8], input: &[u64]) {
    assert!(dst.len() == 8 * input.len());
    unsafe {
        let mut x: *mut u8 = dst.get_unchecked_mut(0);
        let mut y: *const u64 = input.get_unchecked(0);
        for _ in 0..input.len() {
            let tmp = (*y).to_le();
            ptr::copy_nonoverlapping(&tmp as *const _ as *const u8, x, 8);
            x = x.offset(8);
            y = y.offset(1);
        }
    }
}

/// Write a u32 into a vector, which must be 4 bytes long. The value is written in big-endian
/// format.
pub fn write_u32_be(dst: &mut [u8], mut input: u32) {
    assert!(dst.len() == 4);
    input = input.to_be();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 4);
    }
}

/// Write a u32 into a vector, which must be 4 bytes long. The value is written in little-endian
/// format.
pub fn write_u32_le(dst: &mut[u8], mut input: u32) {
    assert!(dst.len() == 4);
    input = input.to_le();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 4);
    }
}

/// Write a vector of u32s into a vector of bytes. The values are written in little-endian format.
pub fn write_u32v_le (dst: &mut[u8], input: &[u32]) {
    assert!(dst.len() == 4 * input.len());
    unsafe {
        let mut x: *mut u8 = dst.get_unchecked_mut(0);
        let mut y: *const u32 = input.get_unchecked(0);
        for _ in 0..input.len() {
            let tmp = (*y).to_le();
            ptr::copy_nonoverlapping(&tmp as *const _ as *const u8, x, 4);
            x = x.offset(4);
            y = y.offset(1);
        }
    }
}

/// Read a vector of bytes into a vector of u64s. The values are read in big-endian format.
pub fn read_u64v_be(dst: &mut[u64], input: &[u8]) {
    assert!(dst.len() * 8 == input.len());
    unsafe {
        let mut x: *mut u64 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u64 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 8);
            *x = u64::from_be(tmp);
            x = x.offset(1);
            y = y.offset(8);
        }
    }
}

/// Read a vector of bytes into a vector of u64s. The values are read in little-endian format.
pub fn read_u64v_le(dst: &mut[u64], input: &[u8]) {
    assert!(dst.len() * 8 == input.len());
    unsafe {
        let mut x: *mut u64 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u64 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 8);
            *x = u64::from_le(tmp);
            x = x.offset(1);
            y = y.offset(8);
        }
    }
}

/// Read a vector of bytes into a vector of u32s. The values are read in big-endian format.
pub fn read_u32v_be(dst: &mut[u32], input: &[u8]) {
    assert!(dst.len() * 4 == input.len());
    unsafe {
        let mut x: *mut u32 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u32 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 4);
            *x = u32::from_be(tmp);
            x = x.offset(1);
            y = y.offset(4);
        }
    }
}

/// Read a vector of bytes into a vector of u32s. The values are read in little-endian format.
pub fn read_u32v_le(dst: &mut[u32], input: &[u8]) {
    assert!(dst.len() * 4 == input.len());
    unsafe {
        let mut x: *mut u32 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u32 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 4);
            *x = u32::from_le(tmp);
            x = x.offset(1);
            y = y.offset(4);
        }
    }
}

/// Read the value of a vector of bytes as a u32 value in little-endian format.
pub fn read_u32_le(input: &[u8]) -> u32 {
    assert!(input.len() == 4);
    unsafe {
        let mut tmp: u32 = mem::uninitialized();
        ptr::copy_nonoverlapping(input.get_unchecked(0), &mut tmp as *mut _ as *mut u8, 4);
        u32::from_le(tmp)
    }
}

/// Read the value of a vector of bytes as a u32 value in big-endian format.
pub fn read_u32_be(input: &[u8]) -> u32 {
    assert!(input.len() == 4);
    unsafe {
        let mut tmp: u32 = mem::uninitialized();
        ptr::copy_nonoverlapping(input.get_unchecked(0), &mut tmp as *mut _ as *mut u8, 4);
        u32::from_be(tmp)
    }
}

/// XOR plaintext and keystream, storing the result in dst.
pub fn xor_keystream(dst: &mut[u8], plaintext: &[u8], keystream: &[u8]) {
    assert!(dst.len() == plaintext.len());
    assert!(plaintext.len() <= keystream.len());

    // Do one byte at a time, using unsafe to skip bounds checking.
    let p = plaintext.as_ptr();
    let k = keystream.as_ptr();
    let d = dst.as_mut_ptr();
    for i in 0isize..plaintext.len() as isize {
        unsafe{ *d.offset(i) = *p.offset(i) ^ *k.offset(i) };
    }
}

/// Copy bytes from src to dest
#[inline]
pub fn copy_memory(src: &[u8], dst: &mut [u8]) {
    assert!(dst.len() >= src.len());
    unsafe {
        let srcp = src.as_ptr();
        let dstp = dst.as_mut_ptr();
        ptr::copy_nonoverlapping(srcp, dstp, src.len());
    }
}

/// Zero all bytes in dst
#[inline]
pub fn zero(dst: &mut [u8]) {
    unsafe {
        ptr::write_bytes(dst.as_mut_ptr(), 0, dst.len());
    }
}

/// An extension trait to implement a few useful serialization
/// methods on types that implement Write
pub trait WriteExt {
    fn write_u8(&mut self, val: u8) -> io::Result<()>;
    fn write_u32_le(&mut self, val: u32) -> io::Result<()>;
    fn write_u32_be(&mut self, val: u32) -> io::Result<()>;
    fn write_u64_le(&mut self, val: u64) -> io::Result<()>;
    fn write_u64_be(&mut self, val: u64) -> io::Result<()>;
}

impl <T> WriteExt for T where T: io::Write {
    fn write_u8(&mut self, val: u8) -> io::Result<()> {
        let buff = [val];
        self.write_all(&buff)
    }
    fn write_u32_le(&mut self, val: u32) -> io::Result<()> {
        let mut buff = [0u8; 4];
        write_u32_le(&mut buff, val);
        self.write_all(&buff)
    }
    fn write_u32_be(&mut self, val: u32) -> io::Result<()> {
        let mut buff = [0u8; 4];
        write_u32_be(&mut buff, val);
        self.write_all(&buff)
    }
    fn write_u64_le(&mut self, val: u64) -> io::Result<()> {
        let mut buff = [0u8; 8];
        write_u64_le(&mut buff, val);
        self.write_all(&buff)
    }
    fn write_u64_be(&mut self, val: u64) -> io::Result<()> {
        let mut buff = [0u8; 8];
        write_u64_be(&mut buff, val);
        self.write_all(&buff)
    }
}

/// symm_enc_or_dec() implements the necessary functionality to turn a SynchronousStreamCipher into
/// an Encryptor or Decryptor
pub fn symm_enc_or_dec<S: SynchronousStreamCipher, R: ReadBuffer, W: WriteBuffer>(
        c: &mut S,
        input: &mut R,
        output: &mut W) ->
        Result<BufferResult, SymmetricCipherError> {
    let count = std::cmp::min(input.remaining(), output.remaining());
    c.process(input.take_next(count), output.take_next(count));
    if input.is_empty() {
        Ok(BufferUnderflow)
    } else {
        Ok(BufferOverflow)
    }
}

/// Convert the value in bytes to the number of bits, a tuple where the 1st item is the
/// high-order value and the 2nd item is the low order value.
fn to_bits(x: u64) -> (u64, u64) {
    (x >> 61, x << 3)
}

/// Adds the specified number of bytes to the bit count. panic!() if this would cause numeric
/// overflow.
pub fn add_bytes_to_bits(bits: u64, bytes: u64) -> u64 {
    let (new_high_bits, new_low_bits) = to_bits(bytes);

    if new_high_bits > 0 {
        panic!("Numeric overflow occured.")
    }

    bits.checked_add(new_low_bits).expect("Numeric overflow occured.")
}

/// Adds the specified number of bytes to the bit count, which is a tuple where the first element is
/// the high order value. panic!() if this would cause numeric overflow.
pub fn add_bytes_to_bits_tuple
        (bits: (u64, u64), bytes: u64) -> (u64, u64) {
    let (new_high_bits, new_low_bits) = to_bits(bytes);
    let (hi, low) = bits;

    // Add the low order value - if there is no overflow, then add the high order values
    // If the addition of the low order values causes overflow, add one to the high order values
    // before adding them.
    match low.checked_add(new_low_bits) {
        Some(x) => {
            if new_high_bits == 0 {
                // This is the fast path - every other alternative will rarely occur in practice
                // considering how large an input would need to be for those paths to be used.
                return (hi, x);
            } else {
                match hi.checked_add(new_high_bits) {
                    Some(y) => return (y, x),
                    None => panic!("Numeric overflow occured.")
                }
            }
        },
        None => {
            let z = match new_high_bits.checked_add(1) {
                Some(w) => w,
                None => panic!("Numeric overflow occured.")
            };
            match hi.checked_add(z) {
                // This re-executes the addition that was already performed earlier when overflow
                // occured, this time allowing the overflow to happen. Technically, this could be
                // avoided by using the checked add intrinsic directly, but that involves using
                // unsafe code and is not really worthwhile considering how infrequently code will
                // run in practice. This is the reason that this function requires that the type T
                // be UnsignedInt - overflow is not defined for Signed types. This function could
                // be implemented for signed types as well if that were needed.
                Some(y) => return (y, low.wrapping_add(new_low_bits)),
                None => panic!("Numeric overflow occured.")
            }
        }
    }
}


/// A FixedBuffer, likes its name implies, is a fixed size buffer. When the buffer becomes full, it
/// must be processed. The input() method takes care of processing and then clearing the buffer
/// automatically. However, other methods do not and require the caller to process the buffer. Any
/// method that modifies the buffer directory or provides the caller with bytes that can be modifies
/// results in those bytes being marked as used by the buffer.
pub trait FixedBuffer {
    /// Input a vector of bytes. If the buffer becomes full, process it with the provided
    /// function and then clear the buffer.
    fn input<F: FnMut(&[u8])>(&mut self, input: &[u8], func: F);

    /// Reset the buffer.
    fn reset(&mut self);

    /// Zero the buffer up until the specified index. The buffer position currently must not be
    /// greater than that index.
    fn zero_until(&mut self, idx: usize);

    /// Get a slice of the buffer of the specified size. There must be at least that many bytes
    /// remaining in the buffer.
    fn next<'s>(&'s mut self, len: usize) -> &'s mut [u8];

    /// Get the current buffer. The buffer must already be full. This clears the buffer as well.
    fn full_buffer<'s>(&'s mut self) -> &'s [u8];

     /// Get the current buffer.
    fn current_buffer<'s>(&'s mut self) -> &'s [u8];

    /// Get the current position of the buffer.
    fn position(&self) -> usize;

    /// Get the number of bytes remaining in the buffer until it is full.
    fn remaining(&self) -> usize;

    /// Get the size of the buffer
    fn size(&self) -> usize;
}

macro_rules! impl_fixed_buffer( ($name:ident, $size:expr) => (
    impl FixedBuffer for $name {
        fn input<F: FnMut(&[u8])>(&mut self, input: &[u8], mut func: F) {
            let mut i = 0;

            // FIXME: #6304 - This local variable shouldn't be necessary.
            let size = $size;

            // If there is already data in the buffer, copy as much as we can into it and process
            // the data if the buffer becomes full.
            if self.buffer_idx != 0 {
                let buffer_remaining = size - self.buffer_idx;
                if input.len() >= buffer_remaining {
                        copy_memory(
                            &input[..buffer_remaining],
                            &mut self.buffer[self.buffer_idx..size]);
                    self.buffer_idx = 0;
                    func(&self.buffer);
                    i += buffer_remaining;
                } else {
                    copy_memory(
                        input,
                        &mut self.buffer[self.buffer_idx..self.buffer_idx + input.len()]);
                    self.buffer_idx += input.len();
                    return;
                }
            }

            // While we have at least a full buffer size chunks's worth of data, process that data
            // without copying it into the buffer
            while input.len() - i >= size {
                func(&input[i..i + size]);
                i += size;
            }

            // Copy any input data into the buffer. At this point in the method, the ammount of
            // data left in the input vector will be less than the buffer size and the buffer will
            // be empty.
            let input_remaining = input.len() - i;
            copy_memory(
                &input[i..],
                &mut self.buffer[0..input_remaining]);
            self.buffer_idx += input_remaining;
        }

        fn reset(&mut self) {
            self.buffer_idx = 0;
        }

        fn zero_until(&mut self, idx: usize) {
            assert!(idx >= self.buffer_idx);
            zero(&mut self.buffer[self.buffer_idx..idx]);
            self.buffer_idx = idx;
        }

        fn next<'s>(&'s mut self, len: usize) -> &'s mut [u8] {
            self.buffer_idx += len;
            &mut self.buffer[self.buffer_idx - len..self.buffer_idx]
        }

        fn full_buffer<'s>(&'s mut self) -> &'s [u8] {
            assert!(self.buffer_idx == $size);
            self.buffer_idx = 0;
            &self.buffer[..$size]
        }

        fn current_buffer<'s>(&'s mut self) -> &'s [u8] {
            let tmp = self.buffer_idx;
            self.buffer_idx = 0;
            &self.buffer[..tmp]
        }

        fn position(&self) -> usize { self.buffer_idx }

        fn remaining(&self) -> usize { $size - self.buffer_idx }

        fn size(&self) -> usize { $size }
    }
));

/// A fixed size buffer of 64 bytes useful for cryptographic operations.
#[derive(Copy)]
pub struct FixedBuffer64 {
    buffer: [u8; 64],
    buffer_idx: usize,
}

impl Clone for FixedBuffer64 { fn clone(&self) -> FixedBuffer64 { *self } }

impl FixedBuffer64 {
    /// Create a new buffer
    pub fn new() -> FixedBuffer64 {
        FixedBuffer64 {
            buffer: [0u8; 64],
            buffer_idx: 0
        }
    }
}

impl_fixed_buffer!(FixedBuffer64, 64);

/// A fixed size buffer of 128 bytes useful for cryptographic operations.
#[derive(Copy)]
pub struct FixedBuffer128 {
    buffer: [u8; 128],
    buffer_idx: usize,
}

impl Clone for FixedBuffer128 { fn clone(&self) -> FixedBuffer128 { *self } }

impl FixedBuffer128 {
    /// Create a new buffer
    pub fn new() -> FixedBuffer128 {
        FixedBuffer128 {
            buffer: [0u8; 128],
            buffer_idx: 0
        }
    }
}

impl_fixed_buffer!(FixedBuffer128, 128);


/// The StandardPadding trait adds a method useful for various hash algorithms to a FixedBuffer
/// struct.
pub trait StandardPadding {
    /// Add standard padding to the buffer. The buffer must not be full when this method is called
    /// and is guaranteed to have exactly rem remaining bytes when it returns. If there are not at
    /// least rem bytes available, the buffer will be zero padded, processed, cleared, and then
    /// filled with zeros again until only rem bytes are remaining.
    fn standard_padding<F: FnMut(&[u8])>(&mut self, rem: usize, func: F);
}

impl <T: FixedBuffer> StandardPadding for T {
    fn standard_padding<F: FnMut(&[u8])>(&mut self, rem: usize, mut func: F) {
        let size = self.size();

        self.next(1)[0] = 128;

        if self.remaining() < rem {
            self.zero_until(size);
            func(self.full_buffer());
        }

        self.zero_until(size - rem);
    }
}


#[cfg(test)]
pub mod test {
    use std;
    use std::iter::repeat;

    use rand::IsaacRng;
    use rand::distributions::{IndependentSample, Range};

    use cryptoutil::{add_bytes_to_bits, add_bytes_to_bits_tuple};
    use digest::Digest;

    /// Feed 1,000,000 'a's into the digest with varying input sizes and check that the result is
    /// correct.
    pub fn test_digest_1million_random<D: Digest>(digest: &mut D, blocksize: usize, expected: &str) {
        let total_size = 1000000;
        let buffer: Vec<u8> = repeat('a' as u8).take(blocksize * 2).collect();
        let mut rng = IsaacRng::new_unseeded();
        let range = Range::new(0, 2 * blocksize + 1);
        let mut count = 0;

        digest.reset();

        while count < total_size {
            let next = range.ind_sample(&mut rng);
            let remaining = total_size - count;
            let size = if next > remaining { remaining } else { next };
            digest.input(&buffer[..size]);
            count += size;
        }

        let result_str = digest.result_str();

        assert!(expected == &result_str[..]);
    }

    // A normal addition - no overflow occurs
    #[test]
    fn test_add_bytes_to_bits_ok() {
        assert!(add_bytes_to_bits(100, 10) == 180);
    }

    // A simple failure case - adding 1 to the max value
    #[test]
    #[should_panic]
    fn test_add_bytes_to_bits_overflow() {
        add_bytes_to_bits(std::u64::MAX, 1);
    }

    // A normal addition - no overflow occurs (fast path)
    #[test]
    fn test_add_bytes_to_bits_tuple_ok() {
        assert!(add_bytes_to_bits_tuple((5, 100), 10) == (5, 180));
    }

    // The low order value overflows into the high order value
    #[test]
    fn test_add_bytes_to_bits_tuple_ok2() {
        assert!(add_bytes_to_bits_tuple((5, std::u64::MAX), 1) == (6, 7));
    }

    // The value to add is too large to be converted into bits without overflowing its type
    #[test]
    fn test_add_bytes_to_bits_tuple_ok3() {
        assert!(add_bytes_to_bits_tuple((5, 0), 0x4000000000000001) == (7, 8));
    }

    // A simple failure case - adding 1 to the max value
    #[test]
    #[should_panic]
    fn test_add_bytes_to_bits_tuple_overflow() {
        add_bytes_to_bits_tuple((std::u64::MAX, std::u64::MAX), 1);
    }

    // The value to add is too large to convert to bytes without overflowing its type, but the high
    // order value from this conversion overflows when added to the existing high order value
    #[test]
    #[should_panic]
    fn test_add_bytes_to_bits_tuple_overflow2() {
        let value: u64 = std::u64::MAX;
        add_bytes_to_bits_tuple((value - 1, 0), 0x8000000000000000);
    }
}

LANGUAGE:

DARK MODE: